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B. INTRODUCTION 
In clinical follow-up studies, subjects are monitored at regular time intervals for a 

physical condition. It is often the case that an event under observation can take place in 
between two successive visits, and it may not be possible for the subject to know the time 
to such an event exactly. For example, consider the situation in which a group of women 
at high risk for breast cancer is asked to take a chemopreventive substance for a fixed time 
period. At the end of the period, each participating woman is required to submit a blood 
or urine sample at regular intervals in order to monitor the level of a validated intermediate 
biomarker. Let X denote the time from cessation of use of the agent to the loss of its 
protective effect, quantified as a return to baseline value of the biomarker. If a woman 
submits a sample for assay on a daily basis, the value of X can be observed exactly, unless 
the protective effect is still present by the time the study is terminated so that X is right 
censored in the usual sense of survival analysis. In practice, however, the follow-up interval 
can be a week or longer; therefore the exact value of X is generally unknown but is known to 
lie between the time points L and R, where L is the number of days from cessation of agent 
intake to the last time the sample was assayed and the protective effect was still present, and 
R is the number of days from cessation of agent intake to the most recent time the sample 
was assayed. If the protective effect is still present, then R takes the value infinity. In any 
case, when the value of X is only known to lie between (L, R), we say that X is censored in 
the interval (L,R). Therefore the observed data consist of either censoring intervals (L,R) 
or exact observations X = L — R. 

We consider nonparametric estimation of the distribution function F(t) of a real-valued 
random variable X (or its survival function S(t) = 1 — F(t), where F(t) —P{X '< £}), when 
the sample data are incomplete due to restricted observation brought about by interval 
censoring. 

At present, there are only two estimation procedures of £ for interval-censored data that 
are generalized maximum likelihood estimates (GMLE) in the sense of Kiefer and Wolfowitz 
[2]. The first one is due to Peto [3] and makes use of the Newton-Ralphon algorithm. The 
second is due to Turnbull [4] and makes use of a self-consistent algorithm. A solution to the 
latter algorithm is also called a self-consistent estimator (SCE) of S. In each case, there is 
no closed form expression for the estimator. 

In the first year of our research, we have focused our attention on interval-censored 
data that satisfy a condition which we call DI condition: data {Li,Ri},..., {Ln,Rn} are 
said to satisfy DI condition if given any two censoring intervals, (Li, R{) and (Lj, Rj), either 
they are disjoint or one is a subset of the other. In a clinical study in which every subject 
has the same follow-up schedule, say at time point oi, a2, ..., a^, then {L,R} = {0,ai}, or 
{a;,aj+i} or {aj,oo}, and hence such interval-censoring data will satisfy Condition DI. 

Under the DI interval-censorship model, we have extended Efron's [5] redistribution 
-to-the-right idea for right-censored data and proposed a redistribution-to-the-inside (RTI) 
method to yield a nonparametric estimator of S(t) which we call redistribution-to-the- 
inside estimator (RTIE). Such an estimate has a closed form expression and can be quickly 
calculated for interval-censored data of any size. The availability of an explicit expression 
for the RTIE has enabled us to show that it is the GMLE under the DI condition, and to 
establish asymptotic properties of the RTIE. 



More often than not, interval-censored data do not satisfy the DI condition. In a clinical 
follow-up situation, for example, a patient may miss a particular appointment. Therefore, 
it is important to consider asymptotic inferences under a more general condition of interval 
censorship. Interval-censored data arise also quite naturally in medical follow-up studies or 
in industrial life-testing. A general interval censorship model can be described as follows: 
Suppose the survival time X has a distribution function F. What we really observe is an 
interval 7, possibly a singleton set. If I = [X, X], we have an exact observation; otherwise, 
we only know that X lies in the interval 7, that is, the observation is interval censored. An 
observation is called right censored if 7 has a left endpoint oo, left censored if 7 has a right 
endpoint 0, exact if 7 is a singleton set and strictly interval censored if the interval 7 is none 
of the above. 

There are 4 typical situations in which interval-censored data can occur. 
Case 2 interval-censored data (C2 data) consist of right-, left- and strictly interval- 

censored but not exact observations. Finkelstein and Wolfe [6] presented a set of case 2 
interval-censored data in comparing two different treatments for breast cancer patients. 
The censoring intervals (in months) arose in the follow-up studies for patients treated with 
radiotherapy and chemotherapy. The failure time is the time until cosmetic deterioration, 
as determined by the appearance of breast retraction. 

Partially interval-censored data (PIC data) consist of C2 data and exact observations. 
Yu, Li and Wong [7] presented a set of PIC data as follows. 
Example 1. Three hundred and seventy-four women with stages I - III unilateral invasive 
breast cancer surgically treated on the Breast Service of Memorial Sloan-Kettering Cancer 
Center between 1985 and 1990 were followed for relapse. The median follow-up duration 
was 46 months. Relapse time was given by the time interval between surgery and the initial 
relapse. For a relapsed patient who was followed closely (for instance, during the initial 
follow-up period after surgery), an exact value for the relapse time could be meaningfully 
assessed. Otherwise, a relapse time between two successive follow-up visits would have to 
be regarded as interval censored. If a patient did not relapse towards the end of the study, 
then her relapse time was right censored. Of the 374 relapse times, 300 were right censored, 
53 were interval censored, and 21 were observed exactly. 

Doubly-censored data (DC data) consist of right-, left-censored and exact observations. 
Examples of DC data can be found in [8]. 

Case 1 interval-censored data (Cl data)) consist of right-censored and left-censored 
observations. Examples of Cl data can be found in [9] and [10]. 

Four different interval censorship models have been proposed corresponding to the four 
different types of data. They are the C2 model, the mixture interval censorship model (MIC 
model), the DC model and the Cl model. Only the C2 and the MIC models involve strictly 
interval-censored observations. 

The GMLE for interval-censored data, is a distribution that maximizes the likelihood 
function (Kiefer k Wolfowitz [2]). The GMLE was derived via a numerical method by 
Peto [3] and Turnbull [4], and they conjectured that the GMLE has an asymptotic normal 
distribution. However, Groeneboom and Wellner [1] conjectured that it does not have the 
asymptotic normal distribution. So far, the asymptotic distribution of the GMLE of F 
has not been established for data involving strictly interval-censored observations (see, e.g., 



Groeneboom and Wellner [1]). Thus, in the research where interval-censored data occur, the 
current practice is to treat the strictly interval-censored data as right-censored data and to 
apply the Kaplan-Meier estimator. The asymptotic properties of the latter estimator have 
been well understood. However, this practice inevitably introduces biases in the statistical 
analysis. 

To study the asymptotic properties of the GMLE, we make the following assumptions: 
(AS1) The censoring distribution is discrete but the survival distribution is arbitrary. 
(AS2) The censoring distribution has a support set of finitely many points, but the survival 

distribution is arbitrary. 
In our second year, we have accomplished several important tasks for the GMLE under 

both DI and non-DI conditions: 
1. Under the Cl model or the C2 model, we have proved the important result that the 

GMLE is strongly consistent under assumption (ASl) 
2. Under the Cl model we have proved the important result that the GMLE is asymptot- 

ically normal and efficient under Assumption (ASl). 
3. Under the C2 model we have proved the important result that the GMLE is asymptot- 

ically normal and efficient under assumption (AS2) 
4. We proposed the MIC model for the PIC data. 
5. Under the MIC model we have proved the important result that the SCE and the 

GMLE are strongly consistent under Assumption (ASl). 
6. Under the MIC model we have proved the important result that the SCE and the 

GMLE are asymptotically normal and efficient under Assumption (ASl). 
Four completed manuscripts ([7], [11], [12] and [13]), pertaining to results 1 thorough 6, 
have been submitted to peer-reviewed statistical journals. We are still preparing the fifth 
paper [14], pertaining to results 1 and 3. We presented some of our results at the Sydney 
International Statistical Congress, July 8-12, 1996, and at the Joint Statistical Meetings: 
Institute of Mathematical Statistics, American Statistical Association and International 
Biometrie Society, August 4-8 Chicago. 



C. BODY 
Main Results 

C.l. C2 Model. 
By Assumption (AS1), there are only countably many (yi,^)'s> we can assume that 

they are {01,02,...}. 
Theorem 1. Under the C2 model and Assumption (AS1), the GMLE F(x) converges to 
F(x) a.s. for all x = ai, i>\. 
Theorem 2. Under the C2 model and Assumption (AS2), and suppose that there are alto- 

gether m points ai, ...,am and that F(a,i) > F(aj_i) fort = 2, ...,m, we have, ^x'~ ^x' —>• 
N(0,1) as n —>• oo for x = ai, where a2 is given in Yu, Schick, Li and Wong [11]. 

To see how close the approximation is to the theoretic results, we present numerical 
results in Table 1. The measure dF assigns the weight 0.2, 0.1, 0.25, 0.3 and 0.15 to the 
point 1, 3, 5, 7 and 9, respectively. The measure dG assigns the weight 0.4 and 0.6 to the 
point (2,6) and (4,8), respectively.   In each simulation, the sample size of 800 was used. 

In the table, F{x) stands for average of F with 1000 repetitions, SD(F(x)) for the sample 
standard deviation of F(x) and a(F(x)) for standard deviation of F(x) computed through 
formula given by Theorem 2. 

Table 1. Standard Deviation of the GMLE 

Or) F(x) P(x) SD(F(x)) v(F(x)) 
2 
4 
6 
8 

0.20 
0.30 
0.55 
0.85 

0.1996 
0.3006 
0.5512 
0.8500 

0.0222 
0.0207 
0.0273 
0.0165 

0.0224 
0.0209 
0.0278 
0.0163 

The sample SD's in the table match well with the values computed from the theoretic 
limits we have derived. 
C.2. MIC Model. 

The investigator proposed for PIC data the MIC model, which is a mixture of a C2 
interval censorship model and a right censorship (RC) model (see Yu, Li and Wong [12]). 
The C2 model assumes that X is a non-negative random variable (failure time) with dis- 
tribution function F and (Y, Z) is a non-negative random vector (censoring interval) with 
joint distribution function G(u,v). It further assumes that Y < Z with probability one 
(w.p.l), and that X and (Y, Z) are independent. The RC model assumes that there is a 
random censoring time T, with distribution function GT, which is independent of X, and 
the information observed from the RC model is (min(X,T),I(X < T)). We introduce a 
random variable, D, to distinguish failure times coming from the two models: 

rj _ f 1    if the observation is from the RC model 
I 0    if the observation is from the C2 model. 

Let P{D = 1} = 7T, where 0 < n < 1.   Formally, a PIC data point is regarded as an 
observation from the RC model w.p.7r and from the C2 model w.p. 1 — 7r. 



To express observed PIC data as intervals, we introduce a notation [L, R\ defined as 
follows: 

[L,R\ = { 

[0, Y) if D = 0 and X < Y 
[Y,Z) if D = 0 and Y < X < Z 
[Z, oo) if D = 0 and X > Z 
(T, oo) if D = 1 and X > T 
[X, X] if D = 1 and X < T, 

where [X, X] is an exact observation. Let (Li,Ri), i = 1,2, ...,n be a random sample 
from the random vector (L, R) with common joint distribution function Q(l, r), and [I, r\ a 
realization of [L,R\. We say that the PIC data [L, R\ are from a mixture interval censorship 
model, called the MIC model. 

Define r = sup{£; P{mm(X,T) < t} < 1} and rz = sup{i; F{2" < t} < 1}. We 
assume that r > TZ, which is imposed throughout the paper. This assumption is reasonable 
since under the RC model [0, r] represents the whole time period of a follow-up study. 

Define 00 = {x; P(X is not censored|X = x) > 0}. Let Oc = r\(i,r); 7-=ooL^rJ' *^e 

intersection of all observed intervals with right endpoint infinity, and Ö = [0,co)\(9c, where 
"\" is the set minus. For PIC data, it can be shown that Ö C [0,r]. Whether Ö = [0,r] or 
not depends on F, G and GT- To take the right endpoint r into account, recall that under 
the RC model the strong consistency of the Kaplan-Meier estimator at r requires either 
F(T-) = 1 or P{T = T} > 0 (cf. Yu and Li [15] p.416). Since the MIC model includes the 
RC model as a special case, a similar assumption is needed and is given as follows. 

(AS3)    Either P{X e 0} = 1 or P{L = r} > 0. 

Theorem 3.    Under (AS1) and (ASS), the SCE F(x) satisfies that 

limn^oo supxGO \F(x) - F(x)\ = 0 a.s. 

To establish asymptotic normality for the SCE, we need an additional assumption on 
the distribution function, namely, 

(AS4)       P{X E I{ PI Ij} > 0 for any two realizations, 7j and Ij, of [L,R\, provided 
U n ij ± 0. 

Theorem 4.    Under Assumptions (ASl), (AS3) and (AS4), the SCE F{x) satisfies that for 

x € Ö, 'Z^T \x' —y N(0,1) as n —>■ oo, where the notations are the same as in Theorem 
2. 

We apply Theorem 4 to the breast cancer data in Example 1 to obtain the SCE and 
its asymptotic variance for the survival function S(t), which represents the proportion of 
women who were relapse free at time t. Figure 1 gives the survival plot together with the 
95% asymptotic confidence bands. 



Fig.1. Self-Consistent Estimate for Breast Cancer Data 

40 60 
time in months 

100 

C.3. Cl Model. 
By Assumption (AS1), there are only countably many (y;, z;)'s, WLOG, we can assume 

that they are {ai,a2,...}. 
Theorem 5.   Under the Cl model and Assumption (AS1), the GMLE F{x) converges to 
F{x) a.s. for all x = ai, i > 1. 
Theorem 6. Under the Cl model and Assumption (AS1), and suppose that F(z) > F(x) > 
F(y) for z,x,y G {ai}i>i and z < x < y; and there is no other ai G (z, y) other than x. 

Then we have, pj^l/^^ 
v 

N(0,1) as n —>■ oo for x = a», where g(x) = P{X — x}. 

D. CONCLUSIONS 
As we point out in INTRODUCTION, interval-censored data are commonly encounted 

in cancer follow-up studies and there has been a lack of asymptotic estimation procedures 
for the survival function. In our second year of research, we have derived the asymptotic 
distribution for the GMLE under Assumption (AS1) or (AS2). In the BODY section, we 
have used our asymptotic results for the MIC model to produce the survival curve and its 
95% confidence band plots for overall relapse free survival for interval-censored data from 
374 women with stages I, II and III breast cancer after treatment by surgery. 

10 



Our immediate research goals for the third year are to extend the results established here 
to the case that the distribution functions are more general than those in assumptions (ASl) 
and (AS2). Specifically, we will extend the method to obtain the asymptotic distribution 
of the GMLE under (ASl) or (AS2) to the general case in which the distribution functions 
are arbitrary. We expect these extensions to be statistically fairly challenging. 
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ABSTRACT: Interval-censored data consist of n pairs of observations (h,ri), i = 
1, ...,n, where li < r*. We either observe the exact survival time X if li = r; or only know 
X € (h,ri) otherwise. We established the asymptotic normality of the nonparametric MLE 
of a survival function S(t) (= P(X > t) with such interval-censored data and present 
an estimate of the asymptotic variance of the MLE. We show that the convergence rate 
in distribution is in y/ri. Simulation study also supports our result. An application to the 
cancer research is presented. 
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